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Foreword

BACK A FEW YEARS AGO I HAD AN IDEA. What if I could make the power of the
DirectX API available to the developers who were going to be using the new set
of languages and common language runtime that Microsoft was developing?
The idea was intriguing, and opening up a larger portion of the world to DirectX
was a goal I was only happy to endorse. Besides, what developer doesn't want to
write games?

It seems that at least once a week I am answering questions directly regard-
ing the performance of managed code, and Managed DirectX in particular. One
of the more common questions I hear is some paraphrase of “Is it as fast as
unmanaged code?”

Obviously in a general sense it isn’'t. Regardless of the quality of the Managed
DirectX AP], the fact remains that it still has to run through the same DirectX API
that the unmanaged code does. There is naturally going to be a slight overhead
for this, but does it have a large negative impact on the majority of applications?
Of course it doesn’t. No one is suggesting that one of the top-of-the-line polygon
pushing games coming out today (say, Half Life 2 or Doom 3) should be written
in Managed DirectX, but that doesn’t mean that there isn't a whole slew of games
that could be. I'll get more to that in just a few moments.

The reality is that many of the developers out there today simply don’t know
how to write well-performing managed code. This isn’t through any shortcoming
of these developers, but rather the newness of the API, combined with not enough
documentation on performance, and how to get the best out of the CLR. For the
most part, we're all new developers in this area, and things will only get better as
people come to understand the process.

It’s not at all dissimilar to the change from assembler to C code for games.

It all comes down to a simple question: Do the benefits outweigh the negatives?
Are you willing to sacrifice a small bit of performance for the easier development
of managed code? The quicker time to market? The greater security? The easier
debugging? Are you even sure that you would see a difference in performance?

Like I mentioned earlier, there are certain games today that aren’t good fits
for having the main engine written in managed code, but there are plenty of
titles that are. The top ten selling PC games just a few months ago included two
versions of the Sims, Zoo Tycoon (+ expansion), Backyard Basketball 2004, and
Uru: Ages Beyond Myst, any of which could have been written in managed code.

Anyone who has taken the time to write some code in one of the managed
languages normally realizes the benefits the platform offers pretty quickly. Using
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this book, you should be able to pick up the beginning concepts of game devel-
opment pretty easily. It takes you through the simple sprite-based games, all the
way through a basic 3-D game implementation.
It’s an exciting time to be a developer.
Tom Miller
Lead Developer for the Managed DirectX Library,
Microsoft Corporation
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Preface

I APPROACHED ALEXANDRE ABOUT A YEAR AGO to offer him comments on his first
book, .NET Game Programming with DirectX 9.0. After presenting him with a
rather long list of what I would have done differently, Alex graciously suggested
collaborating on a new book. We decided early in the process to reuse some

of the game examples from his book (specifically .Nettrix and .Netterpillars),
although some parts have been heavily modified. We did this for two reasons:

¢ The games are good, simple examples that can stand the test of time when
it comes to learning game programming. There was no sense creating a
different game just to convey the same concept.

e Writing different games from scratch would take time away from adding
newer games at the end of the book that challenged the beginner.

Of course, my youthful memories of the early computer games influenced
me to choose a space theme for the later games, leaning on the well-known
games of Asteroids and Spacewar. But I wanted to take things a step further, to
show how 2-D gaming knowledge can quickly scale into 3-D games. I had never
seen a book take such a step, and was frankly worried that it couldn’t be done
effectively. However, the book you're holding is the best attempt I can put for-
ward, and hopefully you'll find the progression simple as well as instructional.

Due to my distaste for gaming books that double as gymnasium free
weights, I wanted to create a book that avoided the long, pointless chapters that
explained Visual Basic .NET (henceforth referred to as “VB”), object-oriented
programming, how to use Visual Studio, etc. This book gets right to the games,
and assumes you have a rudimentary knowledge of VB. If you need to get up to
speed on VB, we recommend Matthew Tagliaferri’s Learn VB .NET Through
Game Programming (Apress, ISBN 1-59059-114-3), which makes an excellent
companion book to this one.

For developers who are already familiar with programming and basic gaming
concepts, this book will serve well as a high-speed introduction to Visual Basic
.NET and, in later chapters, Managed DirectX. If you're already intimately familiar
with DirectX game development and are looking for a book focused directly on
Managed DirectX, I recommend Managed DirectX Kick Start (SAMS, 2003) written
by Tom Miller. Of course, I would love for you to buy this book as well, but I'm
more interested in getting you to write games in Managed DirectX than I am in
making a buck or two by convincing you to buy this book.
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The whole book is designed to be read in a continuous way. In Chapter 1,
we start by creating a very simple game while presenting the basics of collision
detection. Chapter 2 shows how to build a new game, using the concepts pre-
sented in Chapter 1 and adding new explanations and examples about artificial
intelligence in games.

In the following chapters, we continue to build new games and explore new
topics relating to game programming, such as the basics of sprite creation, mul-
tiplayer features, 3-D graphics, porting a game to Pocket PC, and much more.
We start with the basics and increase the complexity as we go along, so that by
the time you come to the advanced topics, you have all the background you
need to gain the most from them. Near the end of the book, we stick our toes in
the deeper DirectX waters by investigating point sprites. I have yet to see a book
that discusses point sprites in a good, introductory style, so even intermediate
game developers should find this part interesting.

Please keep in mind though that this book isn’t intended to provide a route to
the professional game programming world, because we don’t go deep enough
into some essential aspects professional game developers need to know. However,
you can think of this book as a first step into this world, since we do provide
insights into important concepts such as the need to create a good game project
and organizing the game’s team, as well as appendixes written by professionals
from the game industry that serve as guides to game creation.

—David Weller



